New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized -expansion method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42195202
(http://iopscience.iop.org/1751-8121/42/19/195202)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:39

Please note that terms and conditions apply.

New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method

EME Zayed ${ }^{1}$
Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
E-mail: emezayed@hotmail.com

Received 26 January 2009, in final form 9 March 2009
Published 28 April 2009
Online at stacks.iop.org/JPhysA/42/195202

Abstract

In this paper, we construct new traveling wave solutions of some nonlinear evolution equations in mathematical physics via the (3+1)-dimensional potential-YTSF equation, the ($3+1$)-dimensional modified KdV-ZakharovKuznetsev equation, the ($3+1$)-dimensional Kadomtsev-Petviashvili equation and the ($1+1$)-dimensional KdV equation by using a generalized $\left(\frac{G^{\prime}}{G}\right)$ expansion method, where $G=G(\xi)$ satisfies the Jacobi elliptic equation $\left[G^{\prime}(\xi)\right]^{2}=P(G)$. Here, we assume that $P(G)$ is a polynomial of fourth order. Many new exact solutions in terms of the Jacobi elliptic functions are obtained.

PACS numbers: $02.30 . \mathrm{Jr}, 02.70 . \mathrm{Wz}, 05.45 . \mathrm{Yv}, 94.05 . \mathrm{Fq}$
Mathematics Subject Classification: 35K99, 35P05, 35P99

1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors (see, for example, [1-54]) who are interested in nonlinear physical phenomena. Many powerful different methods have been presented by those authors. For integrable nonlinear differential equations, the inverse scattering transform method [3], the Hirota method [10], the truncated Painlevé expansion method [31, 46], the Backlund transform method [18, 19] and the expfunction method [6, 9, 36, 48, 49] are used in looking for exact solutions. Among nonintegrable nonlinear differential equations there is a wide class of equations that are referred to as partially integrable equations because they become integrable for some values of their parameters. There are many different methods to look for the exact solutions of these equations. The most famous algorithms are the truncated Painlevé expansion method [14], the Weierstrass
${ }^{1}$ Present address: Mathematics Department, Faculty of Science, Taif University, El-Taif, El-Hawiyah, PO box 888, Kingdom of Saudi Arabia.
elliptic function method [13], the tanh-function method [1, 8, 41, 50] and the Jacobi elliptic function expansion method $[7,15,17,29,32,34,37,40,42]$. There are other methods which can be found in $[2,12,16,20-27,33,39,43,47]$.

Recently, Wang et al [28] have introduced a simple method, called the $\left(\frac{G^{\prime}}{G}\right)$-expansion method, to look for traveling wave solutions of nonlinear evolution equations, where $G=G(\xi)$ satisfies the second-order linear ordinary differential equation $G^{\prime \prime}(\xi)+\lambda G^{\prime}(\xi)+\mu G(\xi)=0$; here λ and μ are arbitrary constants. For further references, see [5, 44, 45, 53, 54].

In the present paper, we shall use an alternative approach, which may be called a generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method. The main idea of this method is that the traveling wave solutions of nonlinear differential equations can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$, where $G=G(\xi)$ satisfies the Jacobi elliptic equation $\left[G^{\prime}(\xi)\right]^{2}=e_{2} G^{4}(\xi)+e_{1} G^{2}(\xi)+e_{0}$, instead of satisfying the second-order linear ordinary differential equation, where $\xi=x+y+z-V t$ and e_{2}, e_{1}, e_{0}, V are arbitrary constants while ${ }^{\prime}=\frac{\mathrm{d}}{\mathrm{d} \xi}$. The degree of this polynomial can be determined by considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in the given nonlinear equations. The coefficients of this polynomial can be obtained by solving a set of algebraic equations, which result from the process of using the proposed method. This approach will play an important role in constructing many new traveling wave solutions for the nonlinear PDEs via the ($3+1$)dimensional potential-YTSF equation, the (3+1)-dimensional modified KdV-ZakharovKuznetsev equation, the (3+1)-dimensional Kadomtsev-Petviashvili equation and the ($1+1$)dimensional KdV equation, in terms of the Jacobi elliptic functions.

2. Description of a generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method

Suppose that we have the following nonlinear partial differential equation,

$$
\begin{equation*}
F\left(u, u_{t}, u_{x}, u_{y}, u_{z}, u_{t t}, u_{x t}, u_{x x}, u_{x y}, u_{y y}, u_{y t}, u_{z z}, u_{z t}, u_{z x}, u_{z y}, \ldots\right)=0 \tag{2.1}
\end{equation*}
$$

where $u=u(x, y, z, t)$ is an unknown function, F is a polynomial in $u(x, y, z, t)$ and its partial derivatives in which the highest order derivatives and the nonlinear terms are involved. In the following, we give the main steps of the generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method.

Step 1. The traveling wave variable

$$
\begin{equation*}
u(x, y, z, t)=u(\xi), \quad \xi=x+y+z-V t \tag{2.2}
\end{equation*}
$$

where V is a constant, allows us to reduce equation (2.1) to an ODE for $u=u(\xi)$ in the form

$$
\begin{equation*}
P\left(u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}, \ldots\right)=0 \tag{2.3}
\end{equation*}
$$

Step 2. Suppose the solution of equation (2.3) can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows,

$$
\begin{equation*}
u(\xi)=\sum_{i=0}^{n} \alpha_{i}\left(\frac{G^{\prime}}{G}\right)^{i} \tag{2.4}
\end{equation*}
$$

where $G=G(\xi)$ satisfies the following Jacobi elliptic equation,

$$
\begin{equation*}
\left[G^{\prime}(\xi)\right]^{2}=e_{2} G^{4}(\xi)+e_{1} G^{2}(\xi)+e_{0} \tag{2.5}
\end{equation*}
$$

where $\alpha_{i}, e_{2}, e_{1}, e_{0}$ and V are the arbitrary constants to be determined, provided $\alpha_{n} \neq 0$. The positive integer n can be determined by considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in equation (2.1) or (2.3). More
precisely, we define the degree of $u(\xi)$ as $D[u(\xi)]=n$, which gives rise to the degree of other expressions as follows,

$$
\begin{equation*}
D\left[\frac{\mathrm{~d}^{q} u}{\mathrm{~d} \xi^{q}}\right]=n+q, \quad D\left[u^{p}\left(\frac{\mathrm{~d}^{q} u}{\mathrm{~d} \xi^{q}}\right)^{s}\right]=n p+s(q+n) \tag{2.6}
\end{equation*}
$$

Therefore, we can get the value of n in (2.4).
Step 3. Substituting (2.4) into (2.3) and using equation (2.5), we obtain polynomials in $G^{j}(\xi)$, $G^{\prime}(\xi) G^{j}(\xi)(j= \pm 1, \pm 2, \ldots)$. Equating each coefficient of the resulted polynomials to zero yields a set of algebraic equations for $\alpha_{i}, e_{2}, e_{1}, e_{0}$ and V.

Step 4. Since the general solutions of equation (2.5) are well known to us (see appendix A), substituting α_{i}, V and the general solution of equation (2.5) into (2.4) we have many new traveling wave solutions of the nonlinear partial differential equation (2.1).

3. Some applications

In this section, we apply the generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method to construct new traveling wave solutions for the ($3+1$)-dimensional potential-YTSF equation, the ($3+1$)-dimensional modified KdV-Zakharov-Kuznetsev equation, the (3+1)-dimensional KadomtsevPetviashvili equation and the ($1+1$)-dimensional KdV equation, which are very important nonlinear evolution equations in mathematical physics and have attracted the attention of many researchers.

3.1. Example 1. The (3+1)-dimensional potential-YTSF equation

We start with the (3+1)-dimensional potential-YTSF equation [30, 35, 38] of the form

$$
\begin{equation*}
-4 u_{x t}+u_{x x x z}+4 u_{x} u_{x z}+2 u_{x x} u_{z}+3 u_{y y}=0 . \tag{3.1}
\end{equation*}
$$

Yu et al [38] extended the Bogoyavlenskii-Schiff equation [30, 35, 38]

$$
\begin{equation*}
v_{t}+\phi(v) v_{z}=0, \quad \phi(v)=\partial_{x}^{2}+4 v+2 v_{x} \partial_{x}^{-1} \tag{3.2}
\end{equation*}
$$

to be the new (3+1)-dimensional nonlinear evolution equation

$$
\begin{equation*}
\left(-4 v_{t}+\phi(v) v_{z}\right)_{x}+3 v_{y y}=0, \quad \phi(v)=\partial_{x}^{2}+4 v+2 v_{x} \partial_{x}^{-1} \tag{3.3}
\end{equation*}
$$

where $\partial_{x}^{-1} f=\int f \mathrm{~d} x$, which is called the (3+1)-dimensional YTSF equation. Using the potential $v=u_{x}$ gives the (3+1)-dimensional potential-YTSF equation (3.1). The authors gave a traveling solitary wave solution of (3.3). The Backlund transformation and some soliton-like solutions for the potential form of (3.2) have also been found. Yan [35] has found an auto-Backlund transformation of equation (3.1) and has arrived at some families of exact soliton-like solutions and rational solutions as well.

Let us now solve equation (3.1) by the generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method. To this end, we see that the following traveling wave variables,

$$
\begin{equation*}
u(x, y, z, t)=u(\xi) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z-V t \tag{3.5}
\end{equation*}
$$

and V is a constant, permit us converting equation (3.1) into the following ODE

$$
\begin{equation*}
C+(3+4 V) u^{\prime}+u^{\prime \prime \prime}+3 u^{\prime 2}=0 \tag{3.6}
\end{equation*}
$$

and C is an integration constant. Suppose that the solution of equation (3.6) can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows:

$$
\begin{equation*}
u(\xi)=\sum_{i=0}^{n} \alpha_{i}\left(\frac{G^{\prime}}{G}\right)^{i} \tag{3.7}
\end{equation*}
$$

where α_{i} are arbitrary constants, while $G(\xi)$ satisfies the Jacobi elliptic equation (2.5).
Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.6), we deduce from (2.6) that $D\left(u^{\prime \prime \prime}\right)=D\left(u^{\prime 2}\right)$. Therefore $n+3=2(n+1)$ and hence $n=1$. Thus, we obtain

$$
\begin{equation*}
u(\xi)=\alpha_{1}\left(\frac{G^{\prime}}{G}\right)+\alpha_{0} \tag{3.8}
\end{equation*}
$$

From (2.5) and (3.8) we deduce that

$$
\begin{equation*}
u^{\prime}=\alpha_{1}\left[\frac{G^{\prime \prime}}{G}-\left(\frac{G^{\prime}}{G}\right)^{2}\right] \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{G^{\prime \prime}}{G}=e_{1}+2 e_{2} G^{2} \tag{3.10}
\end{equation*}
$$

Consequently, we have the following derivatives

$$
\begin{align*}
& u^{\prime}=\alpha_{1}\left[e_{2} G^{2}-e_{0} G^{-2}\right] \tag{3.11}\\
& u^{\prime \prime}=2 \alpha_{1} G^{\prime}\left[e_{2} G+e_{0} G^{-3}\right] \tag{3.12}\\
& u^{\prime \prime \prime}=2 \alpha_{1}\left[2 e_{1} e_{2} G^{2}-2 e_{1} e_{0} G^{-2}+3 e_{2}^{2} G^{4}-3 e_{0}^{2} G^{-4}\right] \tag{3.13}
\end{align*}
$$

and so on.
Substituting (3.11) and (3.13) into (3.6) we get the following polynomial

$$
\begin{align*}
G^{2}\left[4 \alpha_{1} e_{1} e_{2}+\right. & \left.(4 V+3) \alpha_{1} e_{2}\right]+G^{-2}\left[-(4 V+3) \alpha_{1} e_{0}-4 \alpha_{1} e_{1} e_{0}\right] \\
& +G^{4}\left[6 \alpha_{1} e_{2}^{2}+3 \alpha_{1}^{2} e_{2}^{2}\right]+G^{-4}\left[-6 \alpha_{1} e_{0}^{2}+3 \alpha_{1}^{2} e_{0}^{2}\right]+C-6 \alpha_{1}^{2} e_{2} e_{0}=0 \tag{3.14}
\end{align*}
$$

Consequently, we have the following system of algebraic equations

$$
\begin{align*}
& 4 \alpha_{1} e_{1} e_{2}+(4 V+3) \alpha_{1} e_{2}=0 \\
& -(4 V+3) \alpha_{1} e_{0}-4 \alpha_{1} e_{1} e_{0}=0 \\
& 6 \alpha_{1} e_{2}^{2}+3 \alpha_{1}^{2} e_{2}^{2}=0 \tag{3.15}\\
& -6 \alpha_{1} e_{0}^{2}+3 \alpha_{1}^{2} e_{0}^{2}=0 \\
& C-6 \alpha_{1}^{2} e_{2} e_{0}=0
\end{align*}
$$

which can be solved to obtain

$$
\begin{equation*}
\alpha_{1}=-2, \quad V=-\left(e_{1}+\frac{3}{4}\right), \quad e_{0}=0, \quad C=0 \tag{3.16}
\end{equation*}
$$

Substituting (3.16) into (3.8) yields

$$
\begin{equation*}
u(\xi)=-2\left(\frac{G^{\prime}}{G}\right)+\alpha_{0} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z+t\left(e_{1}+\frac{3}{4}\right) \tag{3.18}
\end{equation*}
$$

According to appendix A, we have the following families of exact solutions.
Family 1. If $e_{0}=0, e_{1}=1, e_{2}=-1$, then we obtain

$$
\begin{equation*}
u(\xi)=2 \tanh (\xi)+\alpha_{0} \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z+\frac{7}{4} t \tag{3.20}
\end{equation*}
$$

Family 2. If $e_{0}=0, e_{1}=e_{2}=1$, then we obtain

$$
\begin{equation*}
u(\xi)=2 \operatorname{coth}(\xi)+\alpha_{0} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z+\frac{7}{4} t . \tag{3.22}
\end{equation*}
$$

Family 3. If $e_{0}=0, e_{1}=-1, e_{2}=1$, then we obtain

$$
\begin{equation*}
u(\xi)=-2 \tan (\xi)+\alpha_{0}, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z-\frac{1}{4} t \tag{3.24}
\end{equation*}
$$

Family 4. If $e_{0}=e_{1}=0, e_{2}=1$, then we obtain

$$
\begin{equation*}
u(\xi)=\frac{2}{\xi}+\alpha_{0} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z+\frac{3}{4} t . \tag{3.26}
\end{equation*}
$$

Family 5. If $e_{0}=0, e_{1}=-\left(m^{2}+1\right), e_{2}=m^{2}$, then we obtain

$$
\begin{equation*}
u(\xi)=-2 c s(\xi) d n(\xi)+\alpha_{0} \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z-t\left(m^{2}+\frac{1}{4}\right) \tag{3.28}
\end{equation*}
$$

3.2. Example 2. The (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation

In this subsection, we consider the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation [32] in the form

$$
\begin{equation*}
u_{t}+\alpha u^{2} u_{x}+u_{x x x}+u_{x y y}+u_{x z z}=0 \tag{3.29}
\end{equation*}
$$

where α is a nonzero constant. Xu [32] has discussed equation (3.29) using an elliptic equation method and found new types of elliptic function solutions.

Let us now solve equation (3.29) by the proposed method. To this end, we see that the traveling wave variable (3.4) allows us to convert equation (3.29) into the following ODE,

$$
\begin{equation*}
C-V u+\frac{1}{3} \alpha u^{3}+3 u^{\prime \prime}=0 \tag{3.30}
\end{equation*}
$$

where C is a constant of integration. Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.30), we get $n=1$. Thus, we have

$$
\begin{equation*}
u(\xi)=\alpha_{1}\left(\frac{G^{\prime}}{G}\right)+\alpha_{0} \tag{3.31}
\end{equation*}
$$

Substituting (3.9) and (3.31) into (3.30) along with (2.5), we get the following polynomial:

$$
\begin{align*}
G^{2}\left[\alpha \alpha_{1}^{2} \alpha_{0} e_{2}\right] & +G^{-2}\left[\alpha \alpha_{1}^{2} \alpha_{0} e_{0}\right]+G G^{\prime}\left[\frac{\alpha}{3} \alpha_{1}^{3} e_{2}+6 \alpha_{1} e_{2}\right]+G^{-1} G^{\prime}\left[-V \alpha_{1}+\frac{\alpha}{3} \alpha_{1}^{3} e_{1}+\alpha \alpha_{1} \alpha_{0}^{2}\right] \\
& +G^{-3} G^{\prime}\left[\frac{\alpha}{3} \alpha_{1}^{3} e_{0}+6 \alpha_{1} e_{0}\right]+C-V \alpha_{0}+\frac{\alpha}{3} \alpha_{0}^{3}+\alpha \alpha_{1}^{2} e_{1} \alpha_{0}=0 \tag{3.32}
\end{align*}
$$

Consequently, we have the following system of algebraic equations,

$$
\begin{aligned}
& \alpha \alpha_{1}^{2} \alpha_{0} e_{2}=0 \\
& \alpha \alpha_{1}^{2} \alpha_{0} e_{0}=0 \\
& \frac{\alpha}{3} \alpha_{1}^{3} e_{2}+6 \alpha_{1} e_{2}=0 \\
& -V \alpha_{1}+\frac{\alpha}{3} \alpha_{1}^{3} e_{1}+\alpha \alpha_{1} \alpha_{0}^{2}=0 \\
& \frac{\alpha}{3} \alpha_{1}^{3} e_{0}+6 \alpha_{1} e_{0}=0 \\
& C-V \alpha_{0}+\frac{\alpha}{3} \alpha_{0}^{3}+\alpha \alpha_{1}^{2} e_{1} \alpha_{0}=0
\end{aligned}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{1}= \pm 3 \sqrt{\frac{-2}{\alpha}}, \quad \alpha_{0}=0, \quad V=-6 e_{1}, \quad C=0 \tag{3.33}
\end{equation*}
$$

Substituting (3.33) into (3.31) yields

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}}\left(\frac{G^{\prime}}{G}\right) \tag{3.34}
\end{equation*}
$$

where

$$
\xi=x+y+z+6 e_{1} t
$$

According to appendix A, we write down only the first three families of exact solutions for equation (3.29) as follows.

Family 1. If $e_{0}=1, e_{1}=-\left(m^{2}+1\right), e_{2}=m^{2}$, then we get

$$
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}} c s(\xi) d n(\xi)
$$

or

$$
\begin{equation*}
u(\xi)=\mp 3 \sqrt{\frac{-2}{\alpha}}\left(1-m^{2}\right) s d(\xi) n c(\xi) \tag{3.35}
\end{equation*}
$$

where $\xi=x+y+z-6 t\left(m^{2}+1\right)$.
Family 2. If $e_{0}=1-m^{2}, e_{1}=2 m^{2}-1, e_{2}=-m^{2}$, then we get

$$
\begin{equation*}
u(\xi)=\mp 3 \sqrt{\frac{-2}{\alpha}} s c(\xi) d n(\xi) \tag{3.36}
\end{equation*}
$$

where $\xi=x+y+z+6 t\left(2 m^{2}-1\right)$.
Family 3. If $e_{0}=m^{2}-1, e_{1}=2-m^{2}, e_{2}=-1$, then we get

$$
\begin{equation*}
u(\xi)=\mp 3 \sqrt{\frac{-2}{\alpha}} m^{2} \operatorname{sn}(\xi) c d(\xi) \tag{3.37}
\end{equation*}
$$

where $\xi=x+y+z+6 t\left(2-m^{2}\right)$.
Similarly, we can write down the other families of exact solutions of equation (3.29) which are omitted for convenience.

3.3. Example 3. The $(3+1)$-dimensional Kadomtsev-Petviashvili equation

In this subsection, we consider the (3+1)-dimensional Kadomtsev-Petviashvili equation $[11,51,52]$ in the form

$$
\begin{equation*}
u_{x t}+6\left(u_{x}\right)^{2}+6 u u_{x x}-u_{x x x x}-u_{y y}-u_{z z}=0 \tag{3.38}
\end{equation*}
$$

which describes the dynamics of solitons and nonlinear waves in plasmas and superfluids. Recently, Zhang [48] used the exp-function method to obtain generalized solitonary solutions and periodic solutions of equation (3.38). Solitary wave solutions, Jacobi elliptic functions solutions, soliton-like solutions and other types of exact solutions of equation (3.38) can be found in [11, 51, 52].

Let us now solve this equation by the proposed method. To this end, we see that the traveling wave variable (3.4) allows us to convert (3.38) into the following ODE,

$$
\begin{equation*}
-(V+2) u+3 u^{2}-u^{\prime \prime}=0 \tag{3.39}
\end{equation*}
$$

where the constants of integration are assumed to be zero. Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.39), we get $n=2$. Thus, we have

$$
\begin{equation*}
u(\xi)=\alpha_{2}\left(\frac{G^{\prime}}{G}\right)^{2}+\alpha_{1}\left(\frac{G^{\prime}}{G}\right)+\alpha_{0} \tag{3.40}
\end{equation*}
$$

Consequently, we deduce from (2.5) and (3.40) that

$$
\begin{align*}
& u^{\prime}=2 \alpha_{2} G^{\prime}\left[e_{2} G-e_{0} G^{-3}\right]+\alpha_{1}\left[e_{2} G^{2}-e_{0} G^{-2}\right] \tag{3.41}\\
& u^{\prime \prime}=2 \alpha_{2}\left[2 e_{1} e_{2} G^{2}+2 e_{1} e_{0} G^{-2}+3 e_{2}^{2} G^{4}+3 e_{0}^{2} G^{-4}+2 e_{0} e_{2}\right]+2 \alpha_{1} G^{\prime}\left[e_{2} G+e_{0} G^{-3}\right] \tag{3.42}
\end{align*}
$$

Substituting (3.40) and (3.42) into (3.39) we get the following polynomial:

$$
\begin{align*}
G^{2}\left[-\alpha_{2} e_{2}(V\right. & \left.+2)+6 \alpha_{2}^{2} e_{1} e_{2}+3 \alpha_{1}^{2} e_{2}+6 \alpha_{2} \alpha_{0} e_{2}-4 \alpha_{2} e_{1} e_{2}\right] \\
& +G^{-2}\left[-\alpha_{2} e_{0}(V+2)+6 \alpha_{2}^{2} e_{1} e_{0}+3 \alpha_{1}^{2} e_{0}+6 \alpha_{2} e_{0} \alpha_{0}-4 \alpha_{2} e_{1} e_{0}\right] \\
& +G^{4}\left[3 \alpha_{2}^{2} e_{2}^{2}-6 \alpha_{2} e_{2}^{2}\right]+G^{-4}\left[3 \alpha_{2}^{2} e_{0}^{2}-6 \alpha_{2} e_{0}^{2}\right] \\
& +G G^{\prime}\left[6 \alpha_{2} \alpha_{1} e_{2}-2 \alpha_{1} e_{2}\right]+G^{-1} G^{\prime}\left[-\alpha_{1}(V+2)+6 \alpha_{2} \alpha_{1} e_{1}+6 \alpha_{1} \alpha_{0}\right] \\
& +G^{-3} G^{\prime}\left[6 \alpha_{2} \alpha_{1} e_{0}-2 \alpha_{1} e_{0}\right]+6 \alpha_{2} e_{1} \alpha_{0}-(V+2)\left(\alpha_{2} e_{1}+\alpha_{0}\right)+3 \alpha_{2}^{2} e_{1}^{2} \\
& +6 \alpha_{2}^{2} e_{2} e_{0}+3 \alpha_{1}^{2} e_{1}+3 \alpha_{0}^{2}-4 \alpha_{2} e_{2} e_{0}=0 . \tag{3.43}
\end{align*}
$$

Consequently, we have the following system of algebraic equations,

$$
\begin{aligned}
& -\alpha_{2} e_{2}(V+2)+6 \alpha_{2}^{2} e_{1} e_{2}+3 \alpha_{1}^{2} e_{2}+6 \alpha_{2} \alpha_{0} e_{2}-4 \alpha_{2} e_{1} e_{2}=0 \\
& -\alpha_{2} e_{0}(V+2)+6 \alpha_{2}^{2} e_{1} e_{0}+3 \alpha_{1}^{2} e_{0}+6 \alpha_{2} e_{0} \alpha_{0}-4 \alpha_{2} e_{1} e_{0}=0 \\
& 3 \alpha_{2}^{2} e_{2}^{2}-6 \alpha_{2} e_{2}^{2}=0 \\
& 3 \alpha_{2}^{2} e_{0}^{2}-6 \alpha_{2} e_{0}^{2}=0 \\
& 6 \alpha_{2} \alpha_{1} e_{2}-2 \alpha_{1} e_{2}=0 \\
& -\alpha_{1}(V+2)+6 \alpha_{2} \alpha_{1} e_{1}+6 \alpha_{1} \alpha_{0}=0 \\
& 6 \alpha_{2} \alpha_{1} e_{0}-2 \alpha_{1} e_{0}=0 \\
& 6 \alpha_{2} \alpha_{0} e_{1}-(V+2)\left(\alpha_{2} e_{1}+\alpha_{0}\right)+3 \alpha_{2}^{2} e_{1}^{2}+6 \alpha_{2}^{2} e_{2} e_{0}+3 \alpha_{1}^{2} e_{1}+3 \alpha_{0}^{2}-4 \alpha_{2} e_{2} e_{0}=0
\end{aligned}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{2}=2, \quad \alpha_{1}=0, \quad V=8 e_{1}+6 \alpha_{0}-2 \tag{3.44}
\end{equation*}
$$

where

$$
\alpha_{0}=-\frac{4}{3} e_{1} \mp \frac{2}{3} \sqrt{e_{1}^{2}-12 e_{2} e_{0}}
$$

Substituting (3.44) into (3.40) yields

$$
\begin{equation*}
u(\xi)=2\left(\frac{G^{\prime}}{G}\right)^{2}-\frac{4}{3} e_{1} \mp \frac{2}{3} \sqrt{e_{1}^{2}-12 e_{2} e_{0}} \tag{3.45}
\end{equation*}
$$

where

$$
\xi=x+y+z-t\left(8 e_{1}+6 \alpha_{0}-2\right)
$$

According to appendix A, we write down only the first three families of exact solutions for equation (3.38) as follows.

Family 1. If $e_{0}=1, e_{1}=-\left(m^{2}+1\right), e_{2}=m^{2}$, then we get

$$
\begin{equation*}
u(\xi)=2 c n^{2}(\xi) d s^{2}(\xi)+\frac{4}{3}\left(m^{2}+1\right) \mp \frac{2}{3} \sqrt{m^{4}-10 m^{2}+1} \tag{3.46}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)=2\left(1-m^{2}\right)^{2} s d^{2}(\xi) n c^{2}(\xi)+\frac{4}{3}\left(m^{2}+1\right) \mp \frac{2}{3} \sqrt{m^{4}-10 m^{2}+1} \tag{3.47}
\end{equation*}
$$

where $\xi=x+y+z+2 t\left[1 \pm 2 \sqrt{m^{4}-10 m^{2}+1}\right]$.
Family 2. If $e_{0}=1-m^{2}, e_{1}=2 m^{2}-1, e_{2}=-m^{2}$, then we get

$$
\begin{equation*}
u(\xi)=2 s c^{2}(\xi) d n^{2}(\xi)-\frac{4}{3}\left(2 m^{2}-1\right) \mp \frac{2}{3} \sqrt{8 m^{2}-8 m^{4}+1} \tag{3.48}
\end{equation*}
$$

where $\xi=x+y+z+2 t\left[1 \pm 2 \sqrt{8 m^{2}-8 m^{4}+1}\right]$.
Family 3. If $e_{0}=m^{2}-1, e_{1}=2-m^{2}, e_{2}=-1$, then we get

$$
\begin{equation*}
u(\xi)=2 m^{4} s n^{2}(\xi) c d^{2}(\xi)-\frac{4}{3}\left(2-m^{2}\right) \mp \frac{2}{3} \sqrt{m^{4}+8 m^{2}-8} \tag{3.49}
\end{equation*}
$$

where $\xi=x+y+z+2 t\left[1 \pm 2 \sqrt{m^{4}+8 m^{2}-8}\right]$. Similarly, we can write down the other families of exact solutions of equation (3.38) which are omitted for convenience.

3.4. Example 4. The ($1+1$)-dimensional KdV equation

In this subsection, we consider the following famous ($1+1$)-dimensional KdV equation:

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{3.50}
\end{equation*}
$$

This equation is a model that governs the one-dimensional propagation of small amplitude, weakly dispersive waves, and plays a major role in the soliton concepts.

Let us now solve this equation by the proposed method. To this end, we see that the traveling wave variable $u(x, t)=u(\xi), \xi=x-V t$, allows us to convert (3.50) into the following ODE,

$$
\begin{equation*}
-V u+3 u^{2}+u^{\prime \prime}=0 \tag{3.51}
\end{equation*}
$$

where the constants of integration are assumed to be zero. Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.51), we get $n=2$. Thus, the solution of equation (3.50) has the same form as (3.40). Substituting (3.40) and
(3.42) into (3.51) we get the following polynomial:

$$
\begin{align*}
G^{2}\left[-\alpha_{2} e_{2} V+\right. & \left.6 \alpha_{2}^{2} e_{1} e_{2}+3 \alpha_{1}^{2} e_{2}+6 \alpha_{2} \alpha_{0} e_{2}+4 \alpha_{2} e_{1} e_{2}\right] \\
& +G^{-2}\left[-\alpha_{2} e_{0} V+6 \alpha_{2}^{2} e_{1} e_{0}+3 \alpha_{1}^{2} e_{0}+6 \alpha_{2} e_{0} \alpha_{0}+4 \alpha_{2} e_{1} e_{0}\right] \\
& +G^{4}\left[3 \alpha_{2}^{2} e_{2}^{2}+6 \alpha_{2} e_{2}^{2}\right]+G^{-4}\left[3 \alpha_{2}^{2} e_{0}^{2}+6 \alpha_{2} e_{0}^{2}\right] \\
& +G G^{\prime}\left[6 \alpha_{2} \alpha_{1} e_{2}+2 \alpha_{1} e_{2}\right]+G^{-1} G^{\prime}\left[-\alpha_{1} V+6 \alpha_{2} \alpha_{1} e_{1}+6 \alpha_{1} \alpha_{0}\right] \\
& +G^{-3} G^{\prime}\left[6 \alpha_{2} \alpha_{1} e_{0}+2 \alpha_{1} e_{0}\right]+6 \alpha_{2} e_{1} \alpha_{0}-V\left(\alpha_{2} e_{1}+\alpha_{0}\right)+3 \alpha_{2}^{2} e_{1}^{2} \\
& +6 \alpha_{2}^{2} e_{2} e_{0}+3 \alpha_{1}^{2} e_{1}+3 \alpha_{0}^{2}+4 \alpha_{2} e_{2} e_{0}=0 . \tag{3.52}
\end{align*}
$$

On equating the coefficients of (3.52) to zero and solving the resulting algebraic equations, we have

$$
\begin{equation*}
\alpha_{2}=-2, \quad \alpha_{1}=0, \quad V=-8 e_{1}+6 \alpha_{0}, \tag{3.53}
\end{equation*}
$$

where α_{0} is given by the formula

$$
\alpha_{0}=\frac{4}{3} e_{1} \mp \frac{2}{3} \sqrt{e_{1}^{2}-12 e_{2} e_{0}} .
$$

Substituting (3.53) into (3.40) yields

$$
\begin{equation*}
u(\xi)=-2\left(\frac{G^{\prime}}{G}\right)^{2}+\frac{4}{3} e_{1} \mp \frac{2}{3} \sqrt{e_{1}^{2}-12 e_{2} e_{0}} \tag{3.54}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+t\left(8 e_{1}-6 \alpha_{0}\right) \tag{3.55}
\end{equation*}
$$

According to appendix A, we write down only the first three families of exact solutions for equation (3.50) as follows.

Family 1. If $e_{0}=1, e_{1}=-\left(m^{2}+1\right), e_{2}=m^{2}$, then we get

$$
\begin{equation*}
u(\xi)=-2 c n^{2}(\xi) d s^{2}(\xi)-\frac{4}{3}\left(m^{2}+1\right) \mp \frac{2}{3} \sqrt{m^{4}-10 m^{2}+1} \tag{3.56}
\end{equation*}
$$

or
$u(\xi)=-2\left(1-m^{2}\right)^{2} s d^{2}(\xi) n c^{2}(\xi)-\frac{4}{3}\left(m^{2}+1\right) \mp \frac{2}{3} \sqrt{m^{4}-10 m^{2}+1}$,
where $\xi=x \pm 4 t \sqrt{m^{4}-10 m^{2}+1}$.
Family 2. If $e_{0}=1-m^{2}, e_{1}=2 m^{2}-1, e_{2}=-m^{2}$, then we get

$$
\begin{equation*}
u(\xi)=-2 s c^{2}(\xi) d n^{2}(\xi)+\frac{4}{3}\left(2 m^{2}-1\right) \mp \frac{2}{3} \sqrt{8 m^{2}-8 m^{4}+1} \tag{3.58}
\end{equation*}
$$

where $\xi=x \pm 4 t \sqrt{8 m^{2}-8 m^{4}+1}$.
Family 3. If $e_{0}=m^{2}-1, e_{1}=2-m^{2}, e_{2}=-1$, then we get

$$
\begin{equation*}
u(\xi)=-2 m^{4} s n^{2}(\xi) c d^{2}(\xi)+\frac{4}{3}\left(2-m^{2}\right) \mp \frac{2}{3} \sqrt{m^{4}+8 m^{2}-8} \tag{3.59}
\end{equation*}
$$

where $\xi=x \pm 4 t \sqrt{m^{4}+8 m^{2}-8}$.
Similarly, we can write down the other families of exact solutions of equation (3.50) which are omitted for convenience.

4. Conclusions

The main idea of the $\left(\frac{G^{\prime}}{G}\right)$-expansion method (see [5, 28, 44, 45, 53, 54]) is that the traveling wave solutions of nonlinear partial differential equations can be expressed as polynomials
in $\left(\frac{G^{\prime}}{G}\right)$, where $G(\xi)$ satisfies a second-order linear ordinary differential equation. In the present paper, we have developed this method where we have assumed that $G(\xi)$ satisfies the Jacobi elliptic equation (2.5) instead of the standard technique used by Wang et al [28]. We have applied this alternative method to some nonlinear PDEs in mathematical physics via the ($3+1$)-dimensional potential-YTSF equation, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation, the (3+1)-dimensional Kadomtsev-Petviashvili equation and the $(1+1)$-dimensional KdV equation. We have obtained families of exact solutions of these equations in terms of the Jacobi elliptic functions.

Acknowledgments

The author wishes to thank the referees for their suggestions and comments.

Appendix A

The general solutions to the Jacobi elliptic equation (2.5) and its derivatives (see, for example, [$7,15,17,34]$) are listed as follows:

e_{0}	e_{1}	e_{2}	$G(\xi)$	$G^{\prime}(\xi)$
1	$-\left(1+m^{2}\right)$	m^{2}	$\text { or } \begin{aligned} & \operatorname{sn}(\xi) \\ & \operatorname{cd}(\xi) \end{aligned}$	$\begin{gathered} c n(\xi) d n(\xi) \\ -\left(1-m^{2}\right) \operatorname{sd}(\xi) n d(\xi) \end{gathered}$
$1-m^{2}$	$2 m^{2}-1$	$-m^{2}$	$c n(\xi)$	$-s n(\xi) d n(\xi)$
$m^{2}-1$	$2-m^{2}$	-1	$d n(\xi)$	$-m^{2} \sin (\xi) c n(\xi)$
m^{2}	$-\left(m^{2}+1\right)$	1	$\text { or } \begin{aligned} & n s(\xi) \\ & d c(\xi) \end{aligned}$	$\begin{gathered} -d s(\xi) c s(\xi) \\ \left(1-m^{2}\right) n c(\xi) s c(\xi) \end{gathered}$
$-m^{2}$	$2 m^{2}-1$	$1-m^{2}$	$n c(\xi)$	$s c(\xi) d c(\xi)$
-1	$2-m^{2}$	$m^{2}-1$	$n d(\xi)$	$m^{2} s d(\xi) c d(\xi)$
$1-m^{2}$	$2-m^{2}$	1	$c s(\xi)$	$-n s(\xi) d s(\xi)$
1	$2-m^{2}$	$1-m^{2}$	$s c(\xi)$	$n c(\xi) d c(\xi)$
1	$2 m^{2}-1$	$m^{2}\left(m^{2}-1\right)$	$s d(\xi)$	$n d(\xi) c d(\xi)$
$m^{2}\left(m^{2}-1\right)$	$2 m^{2}-1$	1	$d s(\xi)$	$-c s(\xi) n s(\xi)$
$\frac{1}{4}$	$\frac{1}{2}\left(1-2 m^{2}\right)$	$\frac{1}{4}$	$n s(\xi) \pm c s(\xi)$	$-d s(\xi) c s(\xi) \mp n s(\xi) d s(\xi)$
$\frac{1}{4}\left(1-m^{2}\right)$	$\frac{1}{2}\left(1+m^{2}\right)$	$\frac{1}{4}\left(1-m^{2}\right)$	$n c(\xi) \pm s c(\xi)$	$s c(\xi) d c(\xi) \pm n c(\xi) d c(\xi)$
$\frac{m^{2}}{4}$	$\frac{1}{2}\left(m^{2}-2\right)$	$\frac{1}{4}$	$n s(\xi) \pm d s(\xi)$	$-d s(\xi) c s(\xi) \mp c s(\xi) n s(\xi)$
$\frac{m^{2}}{4}$	$\frac{1}{2}\left(m^{2}-2\right)$	$\frac{m^{2}}{4}$	$\operatorname{sn}(\xi) \pm \mathrm{i} c n(\xi)$	$c n(\xi) d n(\xi) \mp \mathrm{i} s n(\xi) d n(\xi)$
0	1	-1	$\operatorname{sech}(\xi)$	$-\operatorname{sech}(\xi) \tanh (\xi)$
0	1	1	$\operatorname{csch}(\xi)$	$-\operatorname{csch}(\xi) \operatorname{coth}(\xi)$
0	-1	1	$\sec (\xi)$	$\sec (\xi) \tan (\xi)$
0	0	1	$\frac{1}{\xi}$	$-\frac{1}{\xi^{2}}$
0	$-\left(1+m^{2}\right)$	m^{2}	$s n(\xi)$	$c n(\xi) d n(\xi)$

where $0<m<1$ is the modulus of the Jacobi elliptic functions and $\mathrm{i}=\sqrt{-1}$.

Appendix B

The Jacobi elliptic functions $\operatorname{sn}(\xi), c n(\xi), d n(\xi), n s(\xi), c s(\xi), d s(\xi), s c(\xi), s d(\xi)$ degenerate into hyperbolic functions when $m \rightarrow 1$ as follows,

$$
\begin{gathered}
\operatorname{sn}(\xi) \longrightarrow \tanh (\xi), \quad \operatorname{cn}(\xi) \longrightarrow \operatorname{sech}(\xi), \quad d n(\xi) \longrightarrow \operatorname{sech}(\xi), \quad n s(\xi) \longrightarrow \operatorname{coth}(\xi), \\
\operatorname{cs}(\xi) \longrightarrow \operatorname{cosech}(\xi), \quad d s \xi) \longrightarrow \operatorname{cosech}(\xi), \quad s c(\xi) \longrightarrow \sinh (\xi), \quad \operatorname{sd}(\xi) \longrightarrow \sinh (\xi),
\end{gathered}
$$

and into trigonometric functions when $m \rightarrow 0$ as follows,

$$
\begin{aligned}
& \operatorname{sn}(\xi) \longrightarrow \sin (\xi), \quad \operatorname{cn}(\xi) \longrightarrow \cos (\xi), \quad d n(\xi) \longrightarrow 1, \quad n s(\xi) \longrightarrow \operatorname{cosec}(\xi) \\
& \operatorname{cs}(\xi) \longrightarrow \cot (\xi), \quad d s(\xi) \longrightarrow \operatorname{cosec}(\xi), \quad \operatorname{sc}(\xi) \longrightarrow \tan (\xi), \quad \operatorname{sd}(\xi) \longrightarrow \sin (\xi)
\end{aligned}
$$

Appendix C

$$
\begin{array}{lll}
c d(\xi)=\frac{c n(\xi)}{d n(\xi)}, & d c(\xi)=\frac{d n(\xi)}{c n(\xi)}, & n c(\xi)=\frac{1}{c n(\xi)},
\end{array} \quad n d(\xi)=\frac{1}{d n(\xi)},
$$

References

[1] Abdou M A 2007 The extended tanh-method and its applications for solving nonlinear physical models Appl. Math. Comput. 190 988-96
[2] Abdou M A 2007 The extended F-expansion method and its applications for a class of nonlinear evolution equation Chaos Solitons Fractals 31 95-104
[3] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University Press)
[4] Bai C L and Zhao H 2006 Generalized method to construct the solitonic solutions to (3+1)-dimensional nonlinear equation Phys. Lett. A 354 428-36
[5] Bekir A 2008 Application of the $\left(\frac{G^{\prime}}{G}\right)$-expansion method for nonlinear evolution equations Phys. Lett. A 372 3400-6
[6] Bekir A and Boz A 2008 Exact solutions for nonlinear evolution equations using exp-function method Phys. Lett. A 372 1619-25
[7] Chen Y and Wang Q 2005 Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1) dimensional dispersive long wave equation Chaos Solitons Fractals 24 745-57
[8] Fan E G 2000 Extended tanh-function method and its applications to nonlinear equations Phys. Lett. A 277 212-8
[9] He J H and Wu X H 2006 Exp-function method for nonlinear wave equations Chaos Solitons Fractals 30 700-8
[10] Hirota R 1971 Exact solution of the KdV equation for multiple collisions of solutions Phys. Rev. Lett. 27 1192-4
[11] Hu J Q 2005 An algebraic method exactly solving two high dimensional nonlinear evolution equations Chaos Solitons Fractals 23 391-8
[12] Jimbo M and Miwa T 1983 Solitons and infinite dimensional Lie algebra Publ. Res. Inst. Math. Sci. 19 943-8
[13] Kudryashov N A 1990 Exact solutions of the generalized Kuramoto-Sivashinsky equation Phys. Lett. A 147 287-91
[14] Kudryashov N A 1991 On types of nonlinear nonintegrable equations with exact solutions Phys. Lett. A 155 269-75
[15] Liu S, Fu Z, Liu S D and Zhao Q 2001 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations Phys. Lett. A 289 69-74
[16] Li X Z and Wang M L 2007 A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with higher order nonlinear terms Phys. Lett. A 361 115-8
[17] Lu D 2005 Jacobi elliptic function solutions for two variant Boussinesq equations Chaos Solitons Fractals 24 1373-85
[18] Miura M R 1978 Backlund Transformation (Berlin: Springer)
[19] Rogers C and Shadwick W F 1982 Backlund Transformations (New York: Academic)
[20] Tian B and Gao Y T 1996 Beyond traveling waves: a new algorithm for solving nonlinear evolution equations Comput. Phys. Commun. 95 139-42
[21] Wang Z and Zhang H Q 2007 A new generalized Riccati equation rational expansion method to a class of nonlinear evolution equation with nonlinear terms of any order Appl. Math. Comput. 186 693-704
[22] Wang M and Zhou Y 2003 The periodic wave equations for the Klein-Gordon-Schrödinger equations Phys. Lett. A 318 84-92
[23] Wang M and Li X 2005 Extended F-expansion and periodic wave solutions for the generalized Zakharov equations Phys. Lett. A 343 48-54
[24] Wang M and Li X 2005 Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation Chaos Solitons Fractals 24 1257-68
[25] Wang M L, Li X Z and Zhang J L 2007 Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation Phys. Lett. A 363 96-101
[26] Wang D S, Ren Y J and Zhang H Q 2005 Further extended sinh-cosh and sin-cos methods and new non traveling wave solutions of the (2+1)-dimensional dispersive long wave equations Appl. Math. E—Notes 5 157-63
[27] Wang D S, Sun W, Kong C and Zhang H 2007 New extended rational expansion method and exact solutions of Boussinesq and Jimbo-Miwa equation Appl. Math. Comput. 189 878-86
[28] Wang M, Li X and Zhang J 2008 The $\left(\frac{G^{\prime}}{G}\right)$-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 372 417-23
[29] Wazwaz A M 2008 New solutions of distinct physical structures to high-dimensional nonlinear evolution equations Appl. Math. Comput. 196 363-8
[30] Wazwaz A M 2008 Multiple soliton solutions for the Calogero-Bogoyavlenskii-Schiff Jimbo-Miwa and YTSF equations Appl. Math. Comput. 203 592-7
[31] Weiss J, Tabor M and Garnevalle G 1983 The Painlevé property for partial differential equations J. Math. Phys. 24 522-6
[32] Xu G 2006 An elliptic equation method and its applications in nonlinear evolution equations Chaos Solitons Fractals 29 942-7
[33] Yan Z and Zhang H 2001 New explicit solitary wave solutions and periodic wave solutions for Whitham-BroerKaup equation in shallow water Phys. Lett. A 285 355-62
[34] Yan Z 2003 Abundant families of Jacobi elliptic functions of the (2+1)-dimensional integrable Davey-Stawartson-type equation via a new method Chaos Solitons Fractals 18 299-309
[35] Yan Z 2003 New families of nontraveling wave solutions to a new (3+1) dimensional potential-YTSF equation Phys. Lett. A 318 78-83
[36] Yusufoglu E 2008 New solitary solutions for the MBBM equations using exp-function method Phys. Lett. A 372 442-6
[37] Yusufoglu E and Bekir A 2008 Exact solution of coupled nonlinear evolution equations Chaos Solitons Fractals 37 842-8
[38] Yu S J, Toda K, Sasa N and Fukuyama T 1998 N -soliton solutions to Bogoyavlenskii-Schiff equation and a guest for the soliton solutions in (3+1) dimensions J. Phys. A: Math. Gen. 31 3337-47
[39] Zayed E M E, Zedan H A and Gepreel K A 2004 On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV equations Chaos Solitons Fractals 22 285-303
[40] Zayed E M E, Zedan H A and Gepreel K A 2004 On the solitary wave solutions for nonlinear Euler equations Appl. Anal. 83 1101-32
[41] Zayed E M E, Zedan H A and Gepreel K A 2004 Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations Int. J. Nonlinear Sci. Numer. Simul. 5 221-34
[42] Zayed E M E, Abourabia A M, Gepreel K A and Horbaty M M 2007 Traveling solitary wave solutions for the nonlinear coupled KdV system Chaos Solitons Fractals 34 292-306
[43] Zayed E M E, Gepreel K A and Horbaty M M 2008 Exact solutions for some nonlinear differential equations using complex hyperbolic function Appl. Anal. 87 509-22
[44] Zayed E M E and Gepreel K A 2009 The $\left(\frac{G^{\prime}}{G}\right)$-expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics J. Math. Phys. 50 013502-13
[45] Zayed E M E 2009 The $\left(\frac{G^{\prime}}{G}\right)$-expansion method and its applications to some nonlinear evolution equations in the mathematical physics J. Appl. Math. Comput. at press
[46] Zhang S L, Wu B and Lou S Y 2002 Painlevé analysis and special solutions of generalized Broer-Kaup equations Phys. Lett. A 300 40-8
[47] Zhang S and Xia T C 2006 A generalized F-expansion method and new exact solutions of KonopelchenkoDubrovsky equations Appl. Math. Comput. 183 1190-200
[48] Zhang S 2008 Application of exp-function method to higher dimensional nonlinear evolution equation Chaos Solitons Fractals 38 270-6
[49] Zhang S 2008 Application of exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer-Kaup-Kupershmidt equations Phys. Lett. A 372 1873-80
[50] Zhang S and Xia T C 2008 A further improved tanh-function method exactly solving the ($2+1$)-dimensional dispersive long wave equations Appl. Math. E-Notes 8 58-66
[51] Zhang S and Xia T C 2006 Symbolic computation and new families of exact non-traveling wave solutions to (3+1)-dimensional Kadomtsev-Petviashvili equation Appl. Math. Comput. 181 319-31
[52] Zhang S and Xia T C 2006 A further improved extended Fan sub-equation method and its application to the (3+1)-dimensional Kadomtsev-Petviashvili equation Phys. Lett. A 356 119-23
[53] Zhang S, Tong J and Wang W 2008 A generalized $\left(\frac{G^{\prime}}{G}\right)$-expansion method for the mKdV equation with variable coefficients Phys. Lett. A 372 2254-7
[54] Zhang J, Wei X and Lu Y 2008 A generalized ($\frac{G^{\prime}}{G}$)-expansion method and its applications Phys. Lett. A 372 3653-8

